The Circadian Clock in the Retina Controls Rod-Cone Coupling
نویسندگان
چکیده
Although rod and cone photoreceptor cells in the vertebrate retina are anatomically connected or coupled by gap junctions, a type of electrical synapse, rod-cone electrical coupling is thought to be weak. Using tracer labeling and electrical recording in the goldfish retina and tracer labeling in the mouse retina, we show that the retinal circadian clock, and not the retinal response to the visual environment, controls the extent and strength of rod-cone coupling by activating dopamine D(2)-like receptors in the day, so that rod-cone coupling is weak during the day but remarkably robust at night. The results demonstrate that circadian control of rod-cone electrical coupling serves as a synaptic switch that allows cones to receive very dim light signals from rods at night, but not in the day. The increase in the strength and extent of rod-cone coupling at night may facilitate the detection of large dim objects.
منابع مشابه
Identification of a Circadian Clock-Controlled Neural Pathway in the Rabbit Retina
BACKGROUND Although the circadian clock in the mammalian retina regulates many physiological processes in the retina, it is not known whether and how the clock controls the neuronal pathways involved in visual processing. METHODOLOGY/PRINCIPAL FINDINGS By recording the light responses of rabbit axonless (A-type) horizontal cells under dark-adapted conditions in both the day and night, we foun...
متن کاملDifferential Contribution of Rod and Cone Circadian Clocks in Driving Retinal Melatonin Rhythms in Xenopus
BACKGROUND Although an endogenous circadian clock located in the retinal photoreceptor layer governs various physiological events including melatonin rhythms in Xenopus laevis, it remains unknown which of the photoreceptors, rod and/or cone, is responsible for the circadian regulation of melatonin release. METHODOLOGY/PRINCIPAL FINDINGS We selectively disrupted circadian clock function in eit...
متن کاملHomeostatic Plasticity Mediated by Rod-Cone Gap Junction Coupling in Retinal Degenerative Dystrophic RCS Rats
Rod-cone gap junctions open at night to allow rod signals to pass to cones and activate the cone-bipolar pathway. This enhances the ability to detect large, dim objects at night. This electrical synaptic switch is governed by the circadian clock and represents a novel form of homeostatic plasticity that regulates retinal excitability according to network activity. We used tracer labeling and ER...
متن کاملPhotoreceptor coupling is controlled by connexin 35 phosphorylation in zebrafish retina.
Electrical coupling of neurons is widespread throughout the CNS and is observed among retinal photoreceptors from essentially all vertebrates. Coupling dampens voltage noise in photoreceptors and rod-cone coupling provides a means for rod signals to enter the cone pathway, extending the dynamic range of rod-mediated vision. This coupling is dynamically regulated by a circadian rhythm and light ...
متن کاملDopamine mediates circadian rhythms of rod-cone dominance in the Japanese quail retina.
A circadian clock modulates the functional organization of the Japanese quail retina. Under conditions of constant darkness, rods dominate electroretinogram (ERG) b-wave responses at night, and cones dominate them during the day, yielding a circadian rhythm in retinal sensitivity and rod-cone dominance. The activity of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, also e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 59 شماره
صفحات -
تاریخ انتشار 2008